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The well-known Bonnet theorem [1] is generalized to the case of motion of 

material points of variable mass moving under the action of a quasi-positional 
system of forces, i. e, of a system where each force is a function only of those 

parameters which determine the position of the point on the trajectory. 

Let us consider a motion of each of n free material points of variable mass rnlr taking 
place under the action of an active force Fg (k = 1, . . ., n), depending only on the 

position of the point on the trajectory [2 3. We assume the mass of each point to be a 
continuously differentiable function of the curvilinear coordinate mk = mk (s). 

Each point of the mass mk is acted upon by the reaction force Rk. If we assume that 

Uk = Wk (s) vi= (1) 

where uk is the absolute velocity of detachment (or attachment) of the particles and Wk 
is a continuous vector function, then the force Rk is quasi-positional 

dm, 
R*=yg--wk(s) (k=t,...,n) 

Let the forces acting on the material points, and the initial conditions be such that 
each of these points describes one and the same trajectory, the curve AB. We shall 
determine the condition under which a material point of variable mass &l = fif 6) 

describes the trajectoty AR, or at least a part of it. We assume 1c1 (s) to be a continu- 
ously differentiable function. 

Suppose that real numbers Q and bk exist such, that 
n n 

F = 2 ‘k’kt R= b,R, 
2 (3) 

k=l ?i=l 

where F and R are the forces acting on the point AI. Following the terminolo~ of 
lJ2J we shall call the motion caused only by forces Fk and Rk , for each fixed k, the 
particular motion, while the motion caused by the forces F and R, the composite mo- 
tion. 

Since we cannot postulate in advance that a point of mass 1%1 describes the curve AB 

during its composite motion, we introduce a restoring force N normal to this curve at 
every point [Z] and such that the given point will describe the trajectory AB under the 
action of the force F -+ R . /- N . 

The equation of composite motion [3] has the form 
n n 

dK (dl)-’ = 2 akFk + 2 b,R, + N, K = ~llv 
k=l kll 

(4) 
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and yields ?, 

dT = 2 a,&~, (FJ + i b&4, (R,) - $ v"clM , T = ‘/ziIfva, dr = vdt (5) 

k=l k=l 

where 8Ak (Fk) and 6.41, (Rk) denote the elementary work done. 
Let vk denote the velocities of the points of mass mk in the particular motions. Then 

for the particular motions we have the following relations: 

dT,* = 6Ak (Fk) - f (ok*)2 dmk*, T, = + mkvk? (6) 

1 
dT,” = 6.4, (R,) - 2 (vp”)z dmko, drk = dr (7) 

In the formulas (6) and (7) and in what follows, the upper asterisk denotes the quantities 
referring to the particular motions of the points with mass mk under the kinematic con- 

straints of the form wk = 0 and the upper null index refers to the quantities in the par- 
tucular motions for the material points isolated from the active forces. 

From the relations (6) and (7) we construct the basis combination 

D = i akdTk* + i b,dT,’ (8) 
k=l k=l 

using now the fact that the quasi-positional active and reactive forces in the composite 
and particular motions are equal to each other and by virtue of the equation drk = dr 

we obtain, from (5) and (8). n n 

dT + + 9dM = 2 akdTk* + 2 bkdTko + 

h’=1 k=l 

(9) 

ak (v~*)~ dmk* + + $ b, (vk“)‘Ldmko ’ 

k=l k=l 

We assume that 

vZdM = i u~(v~*)~ dmk* + i b, (vk”)2 dmko 

k=l k=l 

Integrating (9) and taking (10) into account, we obtain 

(10) 

T = TU + 2 akTk* + 2 bkTko 
k=l k=l 

n n 

2To = NUVO~ - 2 a m* k=l k ok (v;k)2 - 2 bkn1;kb%;)2 

k=l 

(11) 

(12) 

where the zero subscript denotes the values of the quantities at t -_ 0. 
Assuming that 

‘ll”V”~ = akm& (v$)2 + 2 bkttLik (Vik)’ > 0 (13) 
k=l k=l 

then T, = 0 and the quantity T is essentially positive at least in some half-neighbor- 
hood of the point A. We shall show that the restoring force N = 0 at any interior 
point of the trajectory AB . Projecting both parts of Eq. (4) on the normal plane P of 
a natural trihedron, we obtain 

iZlv2p-1n = 
k=l 

b, (R,) p + Iv (14) 



Generalization of the Bonnet theorem IO83 

where n is the unit vector of the principal normal, P is the radius of curvature of the 
trajectory and the subscript p denotes a projection of the vector on the respective plane. 

For the particular motion we have 

mk* (vk*J2 p-k = (Fk)P, mkO (v~“)~ p-h = (RklP (15) 

Having constructed the basis combination for (15) we use the fact that the forces Fk 

and Rk are identical in both thelkticular and the composite motions, and that N=fin, 

we obtainfrom (14) and (15) n II 

T= 2 akTr*+ 2 bkT,“+-&pN 

k=l k=l 

(16) 

Eliminating the values p = 0 and 03 and equating the relations (16) and (11) we find 

that when the conditions (13) hold, N = 0. 
Thus we arrive at the following theorem: 

Theorem 1. Let every material point with quasi-positionally variable mass 
mk (k = 1, . . ., n) describe one and the same trajectory AL3 , under the action of the 
quasi-positional active forces Fk and reactive forces Rk . If the conditions (1). (3) (10) 
and (13) hold, a material point of mass M actedupon by the forces F and R and mo- 
ving at the velocitv v0 in the same direction as each of the v&, describes at least a 
part of this trajectory adjacent to the point A. 

The converse theorem can be shown to exist using the approach adopted in [Z]. 
Theorem 2. When the conditions of Theorem 1 hold and the curve AB is a tra- 

jectory of the material point of mass M moving at the velocity v,, under the action of 

forces (3) then the conditions (1) (10) and (13) hold along the curve AL?, 

Indeed, we can confirm that in this case the relations (14) and (15) also hold and, by 
the conditions of the theorm, N = 0. Using the fact that the corresponding quasi-posi- 

tional forces in (14) and (15) are equal to each other, we obtain an equality equivalent 
to the system of relations (ll), (12). 

Theorem 1 can be extended also to the case of a constrained motion when the trajec- 
tory AB lies on a smooth surface Q. The normal reaction forces qr and @)h- of the 
surface Q in the composite and particular motions are normal to the plane Q, tangent 
to the surface Q at the points lying on the curve AB, and the restoring force N can 

be chosen so that it lies in the plane Q,. Then the equation of composite motion is [3] 
n 

dK (dt)-’ = i akFk + 2 b,R, + N + @ 

k=l k=l 

In this case (11) and (13) remain valid and in place of (15) we obtain 

mk* &*)’ P-‘n = (Irk) p -i- mk, mko (VkOY Pn = (R, ) p + Qk 

(17) 

(18) 

Projecting (17) on the plane P , we obtain 

MvZp-ln = ii ak(*k)P+ i 6, @j&P + N + @ (19) 
k=l k=l 

If we construct, as before, the basis combination with the help of (18) and substitute 
it into the right hand side of (19). we obtain 
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akTk* - $$ bkT<) p-rn = N + UJ - i ckUik (Cr = ‘k + bk) 
k=l k=l 

Since N is chosen orthogonal to @ and @k, from (11) and (13) we find that N 
Moreover, from Eq. (20) it then follows that 

k=l 

(20) 

0 . 

From the results obtained we have, as particular cases, the corresponding theorem for 

the points of constant mass [Z] and the proper Bonnet theorem [1]. Just as it was done 
in [Z], the results obtained can be applied to the study of motion of points of variable 

mass in a gravitational field of two fixed centers. 
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CONVEX SHELLS 

Conditions for the realization of the membrane state of equilibrium of multiply- 
connected shells of positive Gaussian curvature subjected to surface and edge 
forces, are investigated ; the concepts of correctness and stability of the mem- 
brane states are introduced. The terminology and notation correspond to that 

used in [l, 21. 

1. Let the middle surface S of a multiply-connected shell of positive Gaussian 
curvature be referred to an isometrically conjugate curvilinear coordinate system z’, xB 
and let us write its equation in the vector form r = I’ (z*, z”). Relative to the regularity 
of the shell we assume that S e Dh.+L;,I,, p > 2, h- > 0. The middle surface S and its 

outline I, = L, + I,,+ . . . i-L,,, in the coordinate plane 5 = 11 + i~2 are a domain 

G with the boundaries 1‘ = I’” f I, + . . . +I,, in a homeomorphic way. The lines 

of the holes in the shell Lq, L,, . . . . L,,, are closed, three-dimensional, nonreentrant 

curves of the Liapunov class. A z’, x2 coordinate system can always be found so that 

the point 5 = 0 would belong to the interior ofthedomain G and the contour F0 
would enclose all the other curves Fl, . . . . F,. Finally, the second quadratic form of the 


